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A note on the variation of vibrational 
temperature along a nozzle 

By J. L. STOLLERY AND J. E. SMITH? 
Department of Aeronautics, Imperial College, University of London 

(Received 21 October 1961) 

Vibrational relaxation effects are examined for hypersonic nozzle air flows. 
A simple method of estimating the distribution of vibrational temperature along 
a nozzle is described and higher-order approximations discussed. Results are 
presented for hyperbolic axisymmetric nozzles with reservoir conditions 
1000 < p o  < 4000p.s.i.a., 1000 < To 3000 OK. Vibrational freezing is shown to 
occur and to cause significant changes in the nozzle exit flow conditions. 

1. Introduction 
The vibrational relaxation times for air expanding through a hypersonic 

nozzle can be long enough to cause large departures of the vibrational tem- 
perature from the equilibrium value. The energy stored in the vibrational mode 
is relatively small, however, and it therefore seemed unlikely that vibrational 
non-equilibrium would cause significant changes either in the nozzle flow pro- 
perties, or in the flow pattern around bodies placed in the stream. For this reason, 
the problem has merited less attention than that devoted to the effects of 
dissociation, ionization and chemical reaction. 

The authors’ interest in vibrational temperature springs from attempts to 
measure stagnation temperatures in the working section of an intermittent, 
hypersonic wind tunnel using the Sodium Line Reversal method (Stollery 1961). 
For a diatomic gas, there is evidence (Clouston, Gaydon & Glass 1958) to suggest 
that the sodium electronic excitation temperature (which the S.L.R. method 
measures) ‘follows’ the vibrational temperature of the gas. The difference 
between the vibrational and equilibrium temperature is therefore needed to 
correct the measured values. 

2. Method of calculation 
The ideal vibrating gas 

Following earlier work, for example, on sound dispersion, the appropriate model 
of a real vibrating gas has been set out by Wood & Kirkwood (1957) and used by 
Johannesen (1961) and Sedney (1961) in studies behind plane and oblique shock 
waves, respectively. Briefly the degrees of freedom of the gas are grouped into 
the active and the inert. Local thermodynamic equilibrium is assumed to exist 
within these two groups but not between them. For the active group, the perfect 
gas equation of state is assumed to apply 

33 =pRT,, (1) 
t Now with the Northern Research a,nd Engineering Corporation. 
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where p ,  p, T are the pressure, density and temperature. R is the gas constant 
and the suffices used in this note are given below. 

a 
e nozzle exit conditions; 
i 
o reservoir or stagnation conditions; 
* nozzle throat properties; 
B frozen; 
1 

the active degrees of freedom (i.e. translation and rotation here); 

the inert degrees of freedom (i.e. vibration here); 

conditions just ahead of blunt body bow shock wave (3 6).  

The change of entropy dS, is given by 

= CPu(dTalTu1 - R ( ~ P / P ) ~  ( 3 )  

where Cp is the specific heat at constant pressure. The inert group is assumed to 
be specified by its temperature Ti so that 

dSi = au/q, (3)  

where u(Ti) is the vibrational energy. The total entropy change dS, is 

dX = dSa+dSi. 

h = Cp,T,+a(Ti). The enthalpy h becomes 

The vibrational internal energy (u) for air has been calculated using the harmonic 
oscillator model and a composition of 20 yo oxygen and 80 yo nitrogen. 

Such a calculation is preferable to subtracting 7/2RT from tabulated values 
of enthalpy (e.g. Hilsenrath et a,l. 1955) since these contain a contribution from 
other low-lying electronic states of 0,. Thus if the 7/2RT for translation and rota- 
tion were subtracted, the remainder would not be due solely to the vibrational 
contribution. 

The relevant values are given in table 1. 

T O K  

400 
600 
800 

1000 
1200 
1400 
1600 

Cal./mol. air 

39.9 
5.05 

134 
289 
495 
740 

1018 

T OK 
1800 
2000 
2200 
2400 
2600 
2800 
3000 

TABLE 1. Vibrational energy in air. 

Cal./mol. air 

1314 
1634 
1982 
2287 
2633 
3001 
3345 

The rate equation used 
duldx = (a - a)/& ( 5 )  

is the linear form suggested by Bethe & Teller (1940). The axia,l co-ordinate x 
has its origin at the nozzle throat and is positive downstream. 3 is the value that 
u would take if equilibrium existed at  the temperature T,. L,  the relaxation 
distance, is the velocity 21 multiplied by the relaxation time T .  This form of the 
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rate equation, strictly valid for a system of harmonic oscillators, is a reasonable 
approximation provided that departures from equilibrium are small. It is used 
here because it is simple, and no better suggestion backed by either theory or 
experiment is available. 

The vibrational relaxation times for air have been taken from the curve shown 
in figure 1. This curve passes through the experimental data of Gaydon & Hurle 
(1960) and is faired towards the experimental data for nitrogen at the lower 
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Gas Symbol Reference 
N2 x Huber & Kantromitz 

A Lukasik & Young 
V Gaydon & Hurle 

0 Blackman 

Air 0 Gaydon & Hurle 

0 2  @ Kn6tzel & KnGtzel 

lo00 2000 3000 4000 5000 

Equilibrium temperature T ( O H )  

FIGURE 1. Data on vibrational relaxation times for N,, 0, and air. (Numbers at the side 
of the experimental points indicate the percentage of H,O present in the gas.) 

temperatures. This seems reasonable on the grounds that (i) the data for air 
exhibit this trend, (ii) 80 yo of the molecules in air are nitrogen. 

Figure 1 contains all the reliable experimental data on N,, 0, and air that the 
authors could find and compares them with the calculations of Dickens & 
Ripamonti (1961) using the general method of Tanczos (1956). The agreement 
is reasonable. Apart from emphasizing the dearth of air data, particularly at  the 
lower temperatures, the figure highlights the large differences that impurities 
make to the measured relaxation times for nitrogen. An excellent critical survey 
of the experimental data is given in chapter 5 of the book by Cottrell & Mc- 
Coubrey (1961). 

15-2 
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Considering all the information currently available, the curve for air used in 
the present work seems sensible but necessarily provisional. 

Quasi-one-dimensional flow equations 
The frictionless adiabatic flow of a vibrating gas passing with velocity v (x )  through 
a nozzle of slowly varying cross-section A ( x )  may be described by the usual 
equations of continuity, momentum and energy 

(6) pAw = const. = riz, 

-pv(dv/dx) = dp/dx, 

h + +vz = const. = h,, 

where the enthalpy h = Cp, T, + u and h, = Cp,(T,), + 3,. These together with 
the rate equation ( 5 )  and equation of state (1) completely describe the gas. 

The eqnations may be solved for given initial conditions and nozzle geometry 
by writing them in differential form and employing a numerical step-by-step 
process. This is extremely laborious and a sample calculation showed no signi- 
ficant difference, in the vibrational temperature, from the simpler method 
suggested below. 

A simple approximation 

The vibrational energy, as a percentage of the total internal energy is 4 %  a t  
1000 O K  and 10 yo at 2000 O K ,  so one expects that departures from isentropy, 
and differences between the local equilibrium temperature T and the local trans- 
lational temperature T,, will at  most be of similar magnitude. For a first approxi- 
mation we may assume isentropic perfect gas flow to find the local values of 
p ,  v, T, along the nozzle and hence the values of 3 ( x )  and 7(x). 

Equation ( 5 )  may be written in the form 

A plot of 3 and L against x helps in selecting suitable intervals Ax when using 
the step-by-step process suggested by equation (5a)  above. The procedure starts 
by assuming equilibrium a t  nozzle entry, i.e. ul = 5, hence u2 and un. 

It is now possible to use this first approximation to ~ ( x )  and solve equations 
( l ) ,  (6), (7 )  and (8) for a new distribution ofp, v, T,, 5 and L. We note, following 
Johannesen, that this second approximation is a solution of the equations 
governing the steady diabatic flow of a perfect gas with constant specific heats. 
The energy equation may be written as 

where 

Thus the non-equilibrium nozzle flow of a real gas may be treated as a perfect 
gas flow with heat addition q(x) equal to the reduction in the energy stored in 
the vibrational modes of a real gas, 5, - ~ ( x ) .  Such perfect gas flows with area 
change and heat transfer are treated in many standard text-books, e.g. Shapiro 

q = (3, - v). 
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(1953) but again a step-by-step procedure is needed and the process needs care. 
The two limiting cases of equation (9) are worth discussing. 

( a )  Zero relaxation time, i.e. complete thermal equilibrium G = 3. The real 
gas flow is then isentropic. Flow properties are readily available from tables 
and those prepared by Erickson & Creekmore (1960) have been used in table 2 
of this note. 

(6) Infinite relaxation time, i.e. immediate freezing (T = a,, q = 0. The other 
real gas properties are then identical with those for the isentropic flow of a perfect 
gas and easily calculable. 

A comparison of nozzle flow exit conditions between these two limiting cases 
is shown in table 2 .  

(a )  ( b )  

1'6 (OK) 119 95.4 

316 9.58 10.0 

p, (p.s.i.a.) 0.106 0.094 

v, (ft./sec) 6863 6420 
a, (ft./sec) 717 642 

TABLE 2. po = 4000 p.s.i.a., To = 2000"K, A,/A* = 536. 

For the example chosen complete freezing of the energy in vibration reduces 
the pressure and temperature at exit by 11 and 20 %, respectively. The Mach 
number increases by 4 yo. 

The flow properties for the real relaxing gas will be between those calculated 
for cases (a )  and (6). Hence if the distributions of ~ ( x )  calculated from equation 
(5a )  starting with flow properties given by the two limiting cases are similar, 
then a second approximation is unnecessary, see figure 2 .  In  practice this is 
the case. The correction to the first approximation is small and, remembering the 
assumptions in the method of analysis and the accuracy of the experimental 
data for r ,  does not justify the labour involved. 

Nozzle shape 

In  the calculations an axisymmetric hyperbolic nozzle geometry was used 

A xtan0 A* _ _  - I f ( 7 )  ' 

where A* and Y* are the throat area and radius respectively, and 6 is the semi- 
angle of the asymptote cone. Upstream of the throat 0 was ta'ken as 45". Two 
downstream values were used namely 0 = 5" and 0 = 15". This nozzle shape 
approximates to the conical nozzles often used in hypersonic wind tunnels and 
is a convenient one to use. It is worth emphasizing that this choice of shape is 
not in any way essential, The simple first approximation described in $ 2  can 
be applied to any nozzle shape, whether or not discontinuities in d A / d x  exist. 

3. Results 
Starting with air in equilibrium a t  the entrance to the nozzle, departures from 

equilibrium are relatively small up to the throat (q -h T,). Beyond the throat 
the vibrational temperature begins to lag further and further behind and at  
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some station, depending on the reservoir pressure, reservoir temperature and 
nozzle divergence angle, Ti freezes a t  a level considerably in excess of the equi- 
librium value. Bray (1959) has shown that a dissociating gas behaves in a similar 
way, the dissociation fraction freezing at  some station in the nozzle. 

* O O i  
1 I I I 1 I I I 
-1 0 1 2 3 4 5 6 

x (in.) 

FIGURE 2. Variation of T, and Ti along a hypersonic nozzle. 

Figure 2 shows the results of a sample calculation in which equilibrium air 
at reservoir conditions of p,, = 4000p.s.i.a., To = 3000 O K  is expanded through a 
hyperbolic nozzle (28 = loo, r* = 0.125in.) of area ratio A,/A* = 536. For a 
perfect gas flow the corresponding exit Mach number is ten. The perfect gas 
translational temperature distribution is shown together with the corresponding 
first approximation to Ti. 

Using this first approximation the real relaxing gas properties were calculated 
using the 'heat transfer to a perfect gas analogy ' described in $2.  It will be noted 
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that initially T, follows the real gas equilibrium values, then as the vibrational 
energy is 'frozen out ' the translational temperature moves on to the perfect gas 
(i.e. frozen) curve. The second approximation to is also plotted and does not 
differ greatly from the first approximation which has been used in compiling 
table 3. 

7-- 

28 p0\, T F  
(p.s.i.a.)' ( O K )  

10" 1000 912 
2000 850 
4000 770 

30" 1000 955 
2000 922 
4000 872 

1000 

TFITo 

0,912 
0.85 
0.77 

0.955 
0.922 
0.872 

2000 
__7 r--h-- 7 

x F / T *  ("I() Tp/To z F I T *  

16 1515 0-757 20 
23 1380 0,690 28 
32 1272 0.636 33.8 

3.04 1712 0.856 3.6 
4.40 1577 0.788 4.90 
6.0 1450 0.725 6.40 

T F  
7- 

T F  
("I0 
1908 
1752 
1612 

2140 
1995 
1853 

3000 
u 

TFIT~ .Fir* 

0.636 22,4 
0.584 30.0 
0.537 38.8 

0.713 4.88 
0.655 6.53 
0.618 7.80 

TABLE 3. Properties of relaxing gas, using first approximation. r* = + in. 

4. Discussion 
Figure 1 shows that the vibrational relaxation time is least when pressure and 

temperature are high. One expects then, for a given size and shape of nozzle, 
the departures from thermal equilibrium to be least when the reservoir pressure 
and temperature are greatest. 

Table 3 and figure 3 confirm this point but it is interesting to  note that in 
every case considered, the vibrational temperature freezes at above 50 yo of the 
reservoir temperature and for the lower values of To and p ,  the ratio T,/T, 
reaches 90%, freezing being complete just downstream of the nozzle throat. 
The point x, has been defined as the station downstream of which falls by 
only 1 yo before the exit A,/A* = 536 is reached. 

It is apparent then that for equilibrium flow throughout a hypersonic nozzle 
the stagnation conditions would have to be large and the divergence angle small, 
i.e. the nozzle very long. Larger values of To are not used here since for air, oxygen 
dissociation becomes increasingly important above 3000 O H .  

The rate equation (5) may be written in non-dimensional form 

L ' d d / d $ -  = F' - c', (5b) 

where d = a/i7,, a' = 3/a0, $- = x/r* and L,' = L/r*. Now 

where ~p is a function of temperature only (see figure 1). If the shape of the nozzle 
(19) and the reservoir temperature are specified then v, ~ p ,  5' and po/p  are all 
functions of 5, and por* is a similarity parameter. The values quoted in table 2 
for p ,  = 2000p.s.i.a. and r* = i i n .  hold equally well for po = lOOOp.s.i.a., 
r* = kin., and p o  = 4000p.s.i.a., r* = &in., etc. The larger the value of par* 
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the smaller the departure from equilibrium; thus the actual nozzle size, as well 
as the shape and the reservoir conditions, is important. 

The controlling factor for vibrational equilibrium is the way in which the 
relaxation length L varies with position. Differentiating equation ( 5  b )  gives 

po = 1000 p.s.i.a. 
po=2non p.s.i.a. 
po=4000 p.s.i.a. 

0.6 08[ 

h" o.41 po= 1OOOp.s.i.a. 
p0=2000 p.s.i.a. 
po =4000p.s.i.a. 

0.6 

2e=100 
~'10.125 in. 

h" . 
h" 2e=100 

~'10.125 in. 

.po= 1OOOp.s.i.a. 
p0=2000 p.s.i.a. 
po =4000p.s.i.a. 

n inoo 2noo 3000 

To ( O K )  

FIGURE 3. (a)  Variation of TF with Po and To, 28 = 30"; 
(b)  variation of FF with Po and To, 28 = 10". 

The flow is assumed to be in equilibrium at nozzle entry (x = - b, 6 = - b/r*)  so 
that CT' = 5' = 1 and L' = 0. Moving downstream through the nozzle the tem- 
perature and vibrational energy fall and the relaxation time increases, i.e. as 
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[ --f 00, L' + 00 and 5' -+ 0. Applying an order of magnitude a,nalysis shows that 
if dL ' /d[  < 1 then the flow will remain in equilibrium, 

d5'/d[ = d d / d [ .  

This is because for negative [, L' .g 1 ; for large positive 6, L' > 1 but d2dld12 -+ 0. 
Hence for d L ' / d [  .g 1, the left-hand side of ( 5 c )  may be neglected and 

dF' /d[  fi d d / d [ .  

If, however, dL ' ld[  8 1, the flow will freeze and remain frozen i.e. dcr'/d[ -+ 0. 
This can be demonstrated by dividing equation ( 5 c )  through by d L ' / d [ ;  we note 
that the term L'd2a'/dt2 does not grow large despite L' tending to infinity for 
large [ since d 2 d / d [ 2  is everywhere small and -+ 0 for L' > 1. 

I 

FIGURE 4. Variation of vibrational relaxation length along the nozzle (not to scale). 

If dL ' /d[  is O(1) then dF'/d[ and d d l d l  will be of the same order, and the flow 
is somewhere between equilibrium and frozen. Numerical calculations show that 
if d L ' / d [  = 1 the flow is reasonably close to equilibrium. 

A qualitative idea of the nozzle length (5) and nozzle shape needed to avoid 
vibrational non-equilibrium can be found by putting dL ' /d[  - O( 1) throughout 
the nozzle. Integration yields X N O(Lexit), i.e. O(lO0ft.) for the conditions of 
table 3. A plot of L' against (A/A*) gives values of d(A/A*)/d[ needed to keep 
dL' /d[  N O(1). Figure 4 shows the variation of L with x for the 10' nozzle used 
here. d L / d x  is large just before the throat, small through the throat region and 
then increasingly large downstream. The nozzle shape needed to keep d L / d x  - O( 1) 
is also sketched. 
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Since the method of finding TF given in 5 2.4 is quick and simple no attempt has 
been made to specify a numerical value of dLld< a t  which sudden freezing could 
be assumed to occur, in order to get a rough approximation. 

5. Estimation of equilibrium static temperature from S.L.R. measure- 
ments of Ti 

The results of this work show that for the hyperbolic nozzles considered, 
Ti and T, are only similar over a very limited Mach number range (0 < M < 1-5) 
and this with the proviso that po  and To are large. Further expansion leads to an 
increasing divergence between and T,. The S.L.R. method can therefore only 
indicate T, over the first part of a hypersonic nozzle. It can, however, give a 
clear indication of frozen flow downstream. 

6. Estimation of equilibrium stagnation temperature from S.L.R. 
measurements of Ti 

Measurements of the vibrational temperature can be made at  the stagnation 
point of a blunt body placed in the supersonic or hypersonic air stream. The 
vibrational energy just ahead of the bow shock wave formed in front of the model, 
is calculated as already described (cr = al). The vibrational energy at  the stag- 
nation point (cro) is then estimated assuming that the pressure and translational 
temperature T, are constant in the region between the bow shock and the body 
surface. This means that 3 and L are constants within the stand-off distance, 
x1 < x < x1 + 6, and the rate equation may be integrated directly in this region to 
give cr =Aexp(-z/L)+??, 

where A is a constant. Using the boundary conditions cr = vl at x = xl, (T = v0 
and 5 = So at x = x1 + 6, equation (10) becomes 

(10) 

vo = 3, - (3, - crl) exp { - b/L( 1 +,u)), (11) 

where ,u is a constant, equal to 5 for a diatomic gas, which Blythe (1961) has 
shown to be a necessary modification when applying the linear form of the rate 
equation through strong shocks. This modification has been used in preparing 
table 4. Equation (1 1) shows that only in two particular cases will go, and hence 
the vibrational temperature measured, Tio, equal the equilibrium stagnation 
values, 3o and To. Either the relaxation length associated with conditions down- 
stream of the bow shock must be much smaller than the stand-off distance, i.e. 
SIL B 1, or (T must be so close to 5, already that recovery is achieved rapidly. 
The latter condition is possible when freezing of the vibrational energy occurs 
upstream of the nozzle throat. 

Table 4 gives the results of calculations made to indicate the (vibrational) 
stagnation temperature, Tio, that the S.L.R. method would measure at  various 
points along the axis of a hypersonic nozzle. It has been assumed that, in order 
to produce stagnation conditions, a flat disk of area equal to 5 %  of the local 
nozzle area is placed normal to the air stream at the various axial stations. In  
table 4 values of x are chosen such that the Mach number, M ,  increases from 4 to 
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12 so that the nozzle radius and hence the disk diameter increase by a factor of 10. 
A similar increase in the bow shock stand-off distance from the disk occurs since 
a t  high Mach numbers 6 is almost directly proportional to disk diameter and 
independent of M .  However, the relaxation length increases one hundred times 
over the chosen range of x so that SIL decreases and the difference between the 
equilibrium stagnation temperature and the vibrational temperature measured 
by the S.L.R. technique becomes increasingly large. 

Mach number $1 
Area ratio A/A* 
Stagnation pressure p ,  (p.s.i.a.) 
Mean velocity between shock 

and body (disk) (ft./sec) 
Itelaxation time T (p) 
Relaxation length L (in.) 
Stand-off distance S (in.) 

vl (cal./mol.) 
Vibrational temperature at the 

'Error' in equilibrium 

SIL 

st'agnation point Ti, ( O K )  

stagnation temperature 
To - Ti, (OK) 

4 
10.7 

555 

640 
2.6 
0.019 
0.052 
2.68 

575 

1980 

20 

6 
53.2 

119 

595 
11.9 
0.085 
0.108 
1.27 

570 

1875 

125 

8 
190 

34 

578 
41.7 
0.289 
0.200 
0.69 

570 

1727 

373 

10 
536 

12 

569 
116 

0.729 
0-33 
0.42 

570 

1600 

400 

TABLE 4. po = 4000 p.s.i.a., To = 2OOO"K, r* = +in., 28 = 10". 

12 
1150 

5.2 

565 
272 

1.85 
0.48 
0.26 

570 

1495 

505 

7. Conclusions 
Freezing of the vibrational energy is likely to occur in hypersonic nozzles. 

As freezing occurs so the nozzle flow properties will diverge from the real gas 
equilibrium flow values. Near the nozzle exit, the error in using equilibrium 
values of pressure temperature and Mach number, is important. 

An approximate measure of the vibrational temperature distribution may be 
readily calculated assuming perfect gas values for pressure and temperature 
(hence cr and L)  plus the linear form of the rate equation. 

Large corrections, to (vibrational) temperatures measured using the S.L.R. 
technique, may be needed when estimating either the static or the stagnation 
equilibrium values. Such corrections may be reduced by lowering the flow Mach 
number. 

The a'uthors wish to thank Prof. A. G. Gaydon for his critical interest in the 
work and to thank Dr I. R. Hurle, in particular, for his help and advice. 
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